Computing the Maximum Detour of a Plane Geometric Graph in Subquadratic Time

نویسنده

  • Christian Wulff-Nilsen
چکیده

Let G be a plane graph where each edge is a line segment. We consider the problem of computing the maximum detour of G, defined as the maximum over all pairs of distinct points p and q of G of the ratio between the distance between p and q in G and the Euclidean distance ‖pq‖. The fastest known algorithm for this problem has Θ(n2) running time where n is the number of vertices. We show how to obtain O(n3/2 log n) expected running time. We also show that if G has bounded treewidth, its maximum detour can be computed in O(n log n) expected time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing the Maximum Detour of a Plane Graph in Subquadratic Time

Let G be a plane graph where each edge is a line segment. We consider the problem of computing the maximum detour of G, defined as the maximum over all pairs of distinct points p and q of G of the ratio between the distance between p and q in G and the distance |pq|. The fastest known algorithm for this problem has Θ(n2) running time where n is the number of vertices. We show how to obtain O(n3...

متن کامل

On edge detour index polynomials

The edge detour index polynomials were recently introduced for computing the edge detour indices. In this paper we find relations among edge detour polynomials for the 2-dimensional graph of $TUC_4C_8(S)$ in a Euclidean plane and $TUC4C8(S)$ nanotorus.

متن کامل

Computing the Maximum Detour and Spanning Ratio of Planar Paths, Trees, and Cycles

The maximum detour and spanning ratio of an embedded graph G are values that measure how well G approximates Euclidean space and the complete Euclidean graph, respectively. In this paper we describe O(n logn) time algorithms for computing the maximum detour and spanning ratio of a planar polygonal path. These algorithms solve open problems posed in at least two previous works [5,10]. We also ge...

متن کامل

A SIMPLE ALGORITHM FOR COMPUTING DETOUR INDEX OF NANOCLUSTERS

Let G be the chemical graph of a molecule. The matrix D = [dij ] is called the detour matrix of G, if dij is the length of longest path between atoms i and j. The sum of all entries above the main diagonal of D is called the detour index of G. In this paper, a new algorithm for computing the detour index of molecular graphs is presented. We apply our algorithm on copper and silver nanoclusters ...

متن کامل

Computing the Detour and Spanning Ratio of Paths, Trees, and Cycles in 2D and 3D

The detour and spanning ratio of a graph embedded in measure how well approximates Euclidean space and the complete Euclidean graph, respectively. In this paper we describe time algorithms for computing the detour and spanning ratio of a planar polygonal path. By generalizing these algorithms, we obtain -time algorithms for computing the detour or spanning ratio of planar trees and cycles. Fina...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • JoCG

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2010